3.11.84 \(\int \frac {(1+x)^{3/2}}{(1-x)^{9/2}} \, dx\) [1084]

Optimal. Leaf size=41 \[ \frac {(1+x)^{5/2}}{7 (1-x)^{7/2}}+\frac {(1+x)^{5/2}}{35 (1-x)^{5/2}} \]

[Out]

1/7*(1+x)^(5/2)/(1-x)^(7/2)+1/35*(1+x)^(5/2)/(1-x)^(5/2)

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {47, 37} \begin {gather*} \frac {(x+1)^{5/2}}{35 (1-x)^{5/2}}+\frac {(x+1)^{5/2}}{7 (1-x)^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 + x)^(3/2)/(1 - x)^(9/2),x]

[Out]

(1 + x)^(5/2)/(7*(1 - x)^(7/2)) + (1 + x)^(5/2)/(35*(1 - x)^(5/2))

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*(Simplify[m + n + 2]/((b*c - a*d)*(m + 1))), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rubi steps

\begin {align*} \int \frac {(1+x)^{3/2}}{(1-x)^{9/2}} \, dx &=\frac {(1+x)^{5/2}}{7 (1-x)^{7/2}}+\frac {1}{7} \int \frac {(1+x)^{3/2}}{(1-x)^{7/2}} \, dx\\ &=\frac {(1+x)^{5/2}}{7 (1-x)^{7/2}}+\frac {(1+x)^{5/2}}{35 (1-x)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 23, normalized size = 0.56 \begin {gather*} -\frac {(-6+x) (1+x)^{5/2}}{35 (1-x)^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 + x)^(3/2)/(1 - x)^(9/2),x]

[Out]

-1/35*((-6 + x)*(1 + x)^(5/2))/(1 - x)^(7/2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(71\) vs. \(2(29)=58\).
time = 0.14, size = 72, normalized size = 1.76

method result size
gosper \(-\frac {\left (1+x \right )^{\frac {5}{2}} \left (-6+x \right )}{35 \left (1-x \right )^{\frac {7}{2}}}\) \(18\)
risch \(\frac {\sqrt {\left (1+x \right ) \left (1-x \right )}\, \left (x^{4}-3 x^{3}-15 x^{2}-17 x -6\right )}{35 \sqrt {1-x}\, \sqrt {1+x}\, \left (-1+x \right )^{3} \sqrt {-\left (1+x \right ) \left (-1+x \right )}}\) \(59\)
default \(\frac {\left (1+x \right )^{\frac {3}{2}}}{2 \left (1-x \right )^{\frac {7}{2}}}-\frac {3 \sqrt {1+x}}{7 \left (1-x \right )^{\frac {7}{2}}}+\frac {3 \sqrt {1+x}}{70 \left (1-x \right )^{\frac {5}{2}}}+\frac {\sqrt {1+x}}{35 \left (1-x \right )^{\frac {3}{2}}}+\frac {\sqrt {1+x}}{35 \sqrt {1-x}}\) \(72\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(3/2)/(1-x)^(9/2),x,method=_RETURNVERBOSE)

[Out]

1/2*(1+x)^(3/2)/(1-x)^(7/2)-3/7*(1+x)^(1/2)/(1-x)^(7/2)+3/70*(1+x)^(1/2)/(1-x)^(5/2)+1/35*(1+x)^(1/2)/(1-x)^(3
/2)+1/35*(1+x)^(1/2)/(1-x)^(1/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 131 vs. \(2 (29) = 58\).
time = 0.28, size = 131, normalized size = 3.20 \begin {gather*} -\frac {{\left (-x^{2} + 1\right )}^{\frac {3}{2}}}{2 \, {\left (x^{5} - 5 \, x^{4} + 10 \, x^{3} - 10 \, x^{2} + 5 \, x - 1\right )}} - \frac {3 \, \sqrt {-x^{2} + 1}}{7 \, {\left (x^{4} - 4 \, x^{3} + 6 \, x^{2} - 4 \, x + 1\right )}} - \frac {3 \, \sqrt {-x^{2} + 1}}{70 \, {\left (x^{3} - 3 \, x^{2} + 3 \, x - 1\right )}} + \frac {\sqrt {-x^{2} + 1}}{35 \, {\left (x^{2} - 2 \, x + 1\right )}} - \frac {\sqrt {-x^{2} + 1}}{35 \, {\left (x - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(1-x)^(9/2),x, algorithm="maxima")

[Out]

-1/2*(-x^2 + 1)^(3/2)/(x^5 - 5*x^4 + 10*x^3 - 10*x^2 + 5*x - 1) - 3/7*sqrt(-x^2 + 1)/(x^4 - 4*x^3 + 6*x^2 - 4*
x + 1) - 3/70*sqrt(-x^2 + 1)/(x^3 - 3*x^2 + 3*x - 1) + 1/35*sqrt(-x^2 + 1)/(x^2 - 2*x + 1) - 1/35*sqrt(-x^2 +
1)/(x - 1)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 69 vs. \(2 (29) = 58\).
time = 0.58, size = 69, normalized size = 1.68 \begin {gather*} \frac {6 \, x^{4} - 24 \, x^{3} + 36 \, x^{2} - {\left (x^{3} - 4 \, x^{2} - 11 \, x - 6\right )} \sqrt {x + 1} \sqrt {-x + 1} - 24 \, x + 6}{35 \, {\left (x^{4} - 4 \, x^{3} + 6 \, x^{2} - 4 \, x + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(1-x)^(9/2),x, algorithm="fricas")

[Out]

1/35*(6*x^4 - 24*x^3 + 36*x^2 - (x^3 - 4*x^2 - 11*x - 6)*sqrt(x + 1)*sqrt(-x + 1) - 24*x + 6)/(x^4 - 4*x^3 + 6
*x^2 - 4*x + 1)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 14.46, size = 226, normalized size = 5.51 \begin {gather*} \begin {cases} - \frac {i \left (x + 1\right )^{\frac {7}{2}}}{35 \sqrt {x - 1} \left (x + 1\right )^{3} - 210 \sqrt {x - 1} \left (x + 1\right )^{2} + 420 \sqrt {x - 1} \left (x + 1\right ) - 280 \sqrt {x - 1}} + \frac {7 i \left (x + 1\right )^{\frac {5}{2}}}{35 \sqrt {x - 1} \left (x + 1\right )^{3} - 210 \sqrt {x - 1} \left (x + 1\right )^{2} + 420 \sqrt {x - 1} \left (x + 1\right ) - 280 \sqrt {x - 1}} & \text {for}\: \left |{x + 1}\right | > 2 \\\frac {\left (x + 1\right )^{\frac {7}{2}}}{35 \sqrt {1 - x} \left (x + 1\right )^{3} - 210 \sqrt {1 - x} \left (x + 1\right )^{2} + 420 \sqrt {1 - x} \left (x + 1\right ) - 280 \sqrt {1 - x}} - \frac {7 \left (x + 1\right )^{\frac {5}{2}}}{35 \sqrt {1 - x} \left (x + 1\right )^{3} - 210 \sqrt {1 - x} \left (x + 1\right )^{2} + 420 \sqrt {1 - x} \left (x + 1\right ) - 280 \sqrt {1 - x}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(3/2)/(1-x)**(9/2),x)

[Out]

Piecewise((-I*(x + 1)**(7/2)/(35*sqrt(x - 1)*(x + 1)**3 - 210*sqrt(x - 1)*(x + 1)**2 + 420*sqrt(x - 1)*(x + 1)
 - 280*sqrt(x - 1)) + 7*I*(x + 1)**(5/2)/(35*sqrt(x - 1)*(x + 1)**3 - 210*sqrt(x - 1)*(x + 1)**2 + 420*sqrt(x
- 1)*(x + 1) - 280*sqrt(x - 1)), Abs(x + 1) > 2), ((x + 1)**(7/2)/(35*sqrt(1 - x)*(x + 1)**3 - 210*sqrt(1 - x)
*(x + 1)**2 + 420*sqrt(1 - x)*(x + 1) - 280*sqrt(1 - x)) - 7*(x + 1)**(5/2)/(35*sqrt(1 - x)*(x + 1)**3 - 210*s
qrt(1 - x)*(x + 1)**2 + 420*sqrt(1 - x)*(x + 1) - 280*sqrt(1 - x)), True))

________________________________________________________________________________________

Giac [A]
time = 1.49, size = 22, normalized size = 0.54 \begin {gather*} -\frac {{\left (x + 1\right )}^{\frac {5}{2}} {\left (x - 6\right )} \sqrt {-x + 1}}{35 \, {\left (x - 1\right )}^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(1-x)^(9/2),x, algorithm="giac")

[Out]

-1/35*(x + 1)^(5/2)*(x - 6)*sqrt(-x + 1)/(x - 1)^4

________________________________________________________________________________________

Mupad [B]
time = 0.27, size = 64, normalized size = 1.56 \begin {gather*} \frac {\sqrt {1-x}\,\left (\frac {11\,x\,\sqrt {x+1}}{35}+\frac {6\,\sqrt {x+1}}{35}+\frac {4\,x^2\,\sqrt {x+1}}{35}-\frac {x^3\,\sqrt {x+1}}{35}\right )}{x^4-4\,x^3+6\,x^2-4\,x+1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + 1)^(3/2)/(1 - x)^(9/2),x)

[Out]

((1 - x)^(1/2)*((11*x*(x + 1)^(1/2))/35 + (6*(x + 1)^(1/2))/35 + (4*x^2*(x + 1)^(1/2))/35 - (x^3*(x + 1)^(1/2)
)/35))/(6*x^2 - 4*x - 4*x^3 + x^4 + 1)

________________________________________________________________________________________